IOCCG WG on the detection of Phytoplankton Functional Types — Update —

C. Moulin

IOCCG-13, Feb. 2008, Unesco, Paris

History

• July 2006: 1st meeting in Paris

➔ Scientific discussions

• October 2006: 2nd meeting in Montreal

→ Table of content (with chapter's leaders)

• March & July 2007: Call for contributions

→ About half of the contributions received

• March 2007: HPLC data into NOMAD (J. Werdell)

 \rightarrow Expected to be used for validation

- July 2007: PFT inter-comparison project (CNES)
 Expected to be used for validation
- I have been quite inefficient since then...

Report status (1)

Chap. I: Introduction to PFTs (Heidi)

- Introduction (Heidi/Lesley)
- Forms of PFTs (all)
- Motivation for the detection of PFTs from space

Chap. II: Inherent Optical Properties of PFTs (Dariusz)

- Phytoplankton Properties
- Phytoplankton IOPs
- Forward models

Report status (2)

Chap. III: Inverse Models (Collin)

- Techniques
- Inputs/outputs
- Sensitivity analyses
- Wavelength number and bandwidth considerations

Chap. IV: Existing Remote Sensing Algorithms (Cyril)

- Empirical algorithms
- Ecological algorithms
- Semi-analytical algorithms
- Analytical algorithms

Report status (3)

Chap. V: Comparison of Algorithms (Cyril)

- Monthly global results for global empirical algorithms
- Regional daily or weekly results
- NOMAD dataset (HPLC, Chl and Rrs)

Chap. VI: Conclusions/Recommendations (Cyril)

- Definitions and characteristics of PFTs
- Summary of the Algorithms' comparison
- What in situ measurements do we need?
- What satellite measurements do we need?

Analysis

• It's too slow

→ Need to "reactivate" people's interest

• It's too ambitious

 \rightarrow Need to revise the scope of the report content

Proposed new report

Chap. I: Introduction to PFTs

- Introduction
- Forms of PFTs
- Inherent Optical Properties of PFTs
- Inverse models
- Motivation for the detection of PFTs from space

Chap. II: Existing Remote Sensing Algorithms

- Empirical algorithms
- Ecological algorithms
- Semi-analytical algorithms
- Analytical algorithms

Chap. III: Comparison of Algorithms

- Monthly global results for global empirical algorithms
- NOMAD dataset (HPLC, Chl and Rrs)

Chap. IV: Conclusions/Recommendations

- Definitions and characteristics of PFTs
- What in situ measurements do we need?
- What satellite measurements do we need?

The NOMAD HPLC dataset

PFT identification using pigment criteria of Alvain et al. (2005)

Use of NOMAD and GEP&CO to validate PFT algo

Matchups between in-situ data and PHYSAT monthly PFT → Apply this approach to other algorithms

The PFT inter-comparison project

- Funded by CNES, leaded by H. Loisel
- Studied PFT algorithms:
 - PFT (Alvain et al., 2005)
 - Pico/Nano/Micro (Uitz et al., 2006)
 - Size Index (Ciotti and Bricaud, 2006)
 - Gamma (Loisel et al., 2006)
- Comparison of monthly global products
- Compare the seasonal cycle of the different parameters

Example of the North Atlantic

For micro (diatoms): Good agreement in the months of max and min

Example of the North Atlantic

For pico: Good agreement in the months of max, but not for the min

Example of the North Atlantic

Good agreement in the months of min and max for S and $\boldsymbol{\gamma}$

