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1. Introduction  

Light is the primary energy source of life on Earth. Apart from some deep-sea 
ecosystems, the existence of all organisms depends directly or indirectly on the process of 
photosynthesis, which is driven by electromagnetic radiation in the spectral range  
from 400 to 700 nm (photosynthetically active radiation, or PAR), or at longer 
wavelengths for some photosynthetic bacteria. Solar irradiance and the transparency of 
water are maximal, and atmospheric extinction is low, at PAR wavelengths. Thus,  
optical in this spectral range can provide valuable information to characterize biological 
processes in aquatic ecosystems.  

Many different types of optical instruments have been developed which can be  
used to quantitatively determine certain parameters of aquatic ecosystems. These 
instruments are operated on buoy, off shore platforms, ships, aircraft, and satellites, and 
measure radiation in different spectral bands. Remote sensing instruments usually  
provide images, thus measuring radiance spectra of individual pixels. In situ optical 
instruments can measure radiation with angle-integration (irradiance), with  
normalization to incident illumination (reflectance), with alterations versus depth 
(attenuation), or the fractions which are absorbed, scattered, or emitted in the water or 
from the dissolved or suspended constituents.  

Usually data from each instrument, or sensor type, are analyzed with software that is 
specifically tailored to that instrument or spectrum. However, operating a group of 
programs is a potential source of errors, because the data analysis programs must be 
consistent with each other with respect to the model formulations and input data. In 
addition, maintenance and data handling are time consuming, as is training new staff.  
For these reasons it is desirable to have a single integrative program. Such a tool, the 
“Water colour Simulator” WASI, was developed for optical in situ measurements. The 
program, together with a detailed user manual, is provided on the CD-ROM 
accompanying this book. It can also be downloaded from an ftp server (Gege, 2002a). 

WASI is designed as a sensor-independent spectra generator and spectra analyzer. 
The program has well documented calculation steps and automated, graphical 
visualization of results. It can also generate and analyze large series of spectra. In the 
forward mode, up to three parameters can be iterated simultaneously to produce a great 
variety of spectra, while in the inverse mode an unlimited number of spectra can be  
read from files and automatically analyzed. The supported spectrum types are listed in 
Table 1. Calculations are based on analytical models. The data provided with WASI  
were determined at Lake Constance (Gege, 1994, 1995; Heege, 2000) and are suited  
for calculating all spectral types at a range of at least 390 to 800 nm and with 1 nm 
spectral resolution. 
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Table 1. Types of spectral measurements for which inverse modeling is implemented. 

Spectrum type Model options Symbol Equation 
Absorption Exclude pure water 

Include pure water 
aWC(λ) 
a(λ) 

(1) 

(3) 

Attenuation For downwelling irradiance Kd(λ) (5) 

Specular reflectance Wavelength dependent 

Constant 
Rrs

surf(λ) 
Rrs

surf
(13a) 

(13b) 

Irradiance reflectance For deep water 

For shallow water 
R(λ) 
Rsh(λ) 

(14) 

(16) 

Remote sensing reflectance Below surface for deep water 

Below surface for shallow water 

Above surface 

Rrs
–(λ) 

Rrs
sh−(λ) 

Rrs(λ) 

(17) 

(19) 

(20) 

Bottom reflectance For irradiance sensors 

For radiance sensors 
Rb(λ) 
Rrs

b(λ) 
(21) 

(22) 

Downwelling irradiance Above surface 
Below surface 

Ed(λ) 
Ed

–(λ) 
(23) 
(24) 

Upwelling radiance Below surface 

Above surface 
Lu

–(λ) 
Lu(λ) 

(26) 

(27) 
 
All input and output files in WASI are in text format (ASCII), making it easy to  

adapt calculations to regional circumstances by replacing some default input spectra and 
changing material-specific constants. A well-designed graphical user interface  
allows intuitive operation. An example of the interface is shown in Figure 1.  
Alternatively, WASI can be operated in a background mode where all actions are 
controlled by an input file. In this mode other programs can utilize WASI as a slave to 
generate or analyze data according to their demands. This input file, WASI.INI, is also 
used to initialize and document all program settings. It is automatically read during 
program start up, and a copy with the actual settings is automatically stored in the  
relevant directory whenever outputs from calculations are saved.  

An overall description of WASI was given in Gege (2004). This chapter focuses on 
data analysis for inverse modeling of spectral measurements. Implemented algorithms, 
including newly developed models for shallow water, are summarized. Problems 
associated with inverse modeling, and solutions offered for WASI, are discussed.  
Finally, some examples of how to apply the program effectively are presented. 

2. Models

2.1 ABSORPTION

2.1.1 Water constituents 
Absorption of a mixture of water constituents is the sum of the components’ 

absorption coefficients: 

,)(aY)(aX)(aC)(a *
Y

5

0i

*
X

*
iiWC λ⋅+λ⋅+λ⋅=λ ∑

=

   (1) 



Inverse Modeling of Spectral Measurements 83 

where λ denotes wavelength. Three groups of water absorbing constituents are  
considered: phytoplankton, non-chlorophyllous particles, and Gelbstoff.  

 

Figure 1. Graphical user interface of WASI in the inverse mode. 

Phytoplankton. The high number of species that occur in natural waters causes  
variability in phytoplankton absorption properties. This is accounted for by the  
inclusion of 6 specific absorption spectra, ai*(λ). If no phytoplankton classification is 
performed, the spectrum a0*(λ) is selected to represent the specific absorption of 
phytoplankton. Ci indicates pigment concentration, where “pigment” is the sum of 
chlorophyll a and phaeophytin a.  

The default spectra provided with WASI are based on measurements at Lake 
Constance. The five spectra a1*(λ)…a5*(λ) represent the lake’s major optical classes 
“cryptophyta type L”, “cryptophyta type H”, “diatoms”, “dinoflagellates”, and “green 
algae” (Gege, 1994, 1995, 1998b). The spectrum a0*(λ) is a weighted sum of these five 
spectra and represents a mixture which can be considered as typical for that lake. This  
was calculated by Heege (2000) using in-situ spectra of phytoplankton absorption  
which were derived from reflectance measurements (Gege, 1994, 1995) and pigment  
data from 32 days in 1990 and 1991. The spectrum a0*(λ) was validated (by Heege)  
using 139 irradiance reflectance and 278 attenuation measurements from 1990 to 1996. 
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Non-chlorophyllous particles. Absorption is calculated as the product of concentration X 
and specific absorption aX*(λ). The spectrum aX*(λ) provided with WASI is taken  
from Prieur and Sathyendranath (1981). It is normalized to 1 at a reference wavelength  
λ0 of 440 nm.  

Gelbstoff (dissolved organic matter). Gelbstoff absorption is the product of  
concentration Y and specific absorption aY*(λ). The spectrum aY*(λ) can either be read 
from file or calculated using the following exponential approximation (Nyquist, 1979; 
Bricaud et al., 1981):  

aY*(λ) = exp[–S · (λ–λο)], (2) 
 

where S denotes the spectral slope, and λ0 is a reference wavelength with aY*  
normalized to 1. Default values are λ0 = 440 nm and S = 0.014 nm-1, which are 
representative of many types (Bricaud et al., 1981; Carder et al., 1989).  

2.1.2 Natural water  
The bulk absorption of a natural water body is the sum of absorption of pure water 

and of the water constituents: 

.)(a
dT

)(da)TT()(a)(a WC
W

0W λ+
λ

⋅−+λ=λ     (3) 

Absorption of pure water is defined by a temperature-independent term aW, which is  
valid for a reference temperature T0, and a temperature gradient daW/dT with T being the 
actual water temperature. For aW(λ), the spectrum measured by Buiteveld et al. (1994)  
at T0 = 20°C is used for a spectral range of 391–787 nm. For daW/dT a spectrum  
measured by one of the authors (Gege, unpublished data) is used. 

2.2 BACKSCATTERING 

Backscattering (bb) of a water body is the sum of backscattering by pure water (W) 
and suspended matter. For the latter, a distinction between large (≥5 µm, L) and small  
(≤5 µm, S) particles is made. Thus, the following parameterization is chosen:  

bb(λ) = bb,W(λ) + CL · bb,L* · bL(λ) + CS · bb,S* · (λ/λS) n.   (4) 

2.2.1 Pure water  
For pure water, the empirical relation of Morel (1974) is used: bb,W(λ) = b1 · (λ/λ1)–4.32. 

The specific backscattering coefficient, b1, depends on salinity. It is b1 = 0.00111 m-1  
for fresh water and b1 = 0.00144 m-1 for oceanic water with a salinity of 35–38 ‰ with  
λ1 = 500 nm as the reference wavelength. 
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2.2.2 Large particles  
Backscattering by large particles is calculated as the product of concentration CL, 

specific backscattering coefficient bb,L*, and normalized scattering function bL(λ). The 
user has several options for calculation: 

• CL can be treated either as an independent parameter, or CL = C0 can be  
assigned, where C0 is the concentration of phytoplankton class no. 0 (see eq. 1). 
The latter is useful for Case 1 water types where the concentrations of particles 
and phytoplankton are highly correlated.  

• bb,L* can be treated either as a constant with a default value of 0.0086 m2 g-1 
(Heege, 2000), or as bb,L* = A · CL

B. Such a non-linear dependency of  
scattering on concentration was observed for phytoplankton (Morel, 1980). It 
may be used for Case 1 water types, while bb,L* = constant is appropriate for 
Case 2 waters with significant sources of non-phytoplankton suspended matter. 
Typical values of the empirical constants are A = 0.0006 m2 g-1

 
and B = –0.37 

(Sathyendranath et al., 1989).  

• bL(λ) can either be read from file, or it can be calculated as bL(λ) = a0*(λL) / 
a0*(λ), where a0*(λ) is the specific absorption spectrum of phytoplankton class 
no. 0 (see eq. 1), and λL denotes a reference wavelength. This method assumes 
that backscattering by large particles originates mainly from phytoplankton cells, 
and couples absorption and scattering according to the Case 1 waters model of 
Sathyendranath et al. (1989). However, such coupling may be used in 
exceptional cases only, since living algae have a negligible influence on the 
backscattering process by oceanic waters (Ahn et al., 1992), and in Case 2 waters 
particle scattering is weakly related to phytoplankton absorption in general. In 
WASI, bL(λ) = 1 is set as default.  

2.2.3 Small particles  
Backscattering by small particles is calculated as the product of concentration CS, 

specific backscattering coefficient bb,S*, and a normalized scattering function (λ/λS)n.  
The exponent n, which determines the spectral shape, depends on particle size  
distribution. The variable “n” is typically about –1 (Sathyendranath et al., 1989) and  
bb,S* is about 0.005 m2 g-1 for λS = 500 nm.  

2.3 ATTENUATION  

The diffuse attenuation coefficient of irradiance E is defined as K = – (1/E) dE/dz, 
where z is the depth. Similarly, the attenuation coefficient of radiance L is defined as  
k = – (1/L) dL/dz. Attenuation is an apparent optical property (AOP) and depends not only 
on the properties of the medium, but additionally on the geometric distribution of the 
illuminating light field. 

2.3.1 Diffuse attenuation for downwelling irradiance  
The most important attenuation coefficient is Kd, which describes the extinction of 

downwelling irradiance Ed
–. The following parameterization is adapted from Gordon 

(1989), which largely eliminates the light field effect near the surface:  
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λ+λ
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a(λ) is calculated according to eq. (3), bb(λ) using eq. (4). θ’sun is the sun zenith angle in 
water. The coefficient κ0 depends on the scattering phase function. Gordon (1989) 
determined a value of κ0 = 1.0395 from Monte simulations in Case 1 waters,  
Albert and Mobley (2003) found a value of κ0 = 1.0546 from simulations in Case 2  
waters using the radiative transfer program Hydrolight (Mobley et al., 1993). Some 
authors use eq. (5) with κ0 = 1 (Sathyendranath and Platt, 1988, 1997; Gordon et al., 
1975). In WASI, κ0 is read from the WASI.INI file; the default value is 1.0546.  

2.3.2 Diffuse attenuation for upwelling irradiance  
For upwelling irradiance two attenuation coefficients are used: KuW for the  

radiation backscattered in the water, and KuB for the radiation reflected from the bottom. 
The following parameterization is adopted from Albert and Mobley (2003):  

[ ] [ ] .
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The function ωb(λ) depends on absorption a(λ) and backscattering bb(λ) of the water  
body:  

.
)(b)(a

)(b)(
b

b
b λ+λ

λ
=λω       (8) 

Eqs. (6) and (7) are used in the model of irradiance reflectance in shallow waters.  

2.3.3 Attenuation for upwelling radiance  
For upwelling radiance two attenuation coefficients are used: kuW for the radiation 

backscattered in the water, and kuB for the radiation reflected from the bottom. The 
following parameterization is adopted from Albert and Mobley (2003):  
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where θ’v is the viewing angle in water measured from the nadir direction. These  
equations are used in the model of remote sensing reflectance in shallow waters. 
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2.4 SPECULAR REFLECTANCE  

An above-water radiance sensor looking down to the water surface measures the  
sum of two radiance components: one from the water body and one from the surface. The 
first comprises the desired information about the water constituents, the second is an 
unwanted add-on which requires correction. However, correction is difficult. For  
example, the method from the SeaWiFS protocols (Mueller and Austin, 1995), which is 
widely used in optical oceanography, leads to rms errors of the corrected water leaving 
radiance as large as 90% under typical field conditions (Toole et al., 2000). Thus,  
WASI offers different methods. 

The radiance reflected from the surface,  Lr(λ), is a fraction  σL  of sky radiance  
Ls(λ): 

Lr(λ) = σL · Ls(λ).       (11) 

Ls(λ) is the average radiance of that area of the sky that is specularly reflected into the 
sensor. It can be imported from file or calculated using eq. (25). σL is the Fresnel 
reflectance and depends on the angle of reflection. The value can either be specified by the 
user or it can be calculated from the viewing angle θv using the Fresnel equation for 
unpolarized light (Jerlov 1976):  

.
)'(tan
)'(tan

)'(sin
)'(sin

2
1

vv
2

vv
2

vv
2

vv
2

L θ+θ
θ−θ

+
θ+θ
θ−θ

=σ      (12) 

θ’v is the angle of refraction, which is related to θv by Snell’s law  nW sin θ’v = sin θv, 
where nW ≈ 1.33 is the refractive index of water. For viewing angles near nadir,  
σL ≈  0.02. 

The ratio of the radiance reflected from the water surface to the downwelling 
irradiance,  

,
)(E
)(L

)(E
)(L)(R

d

s
L

d

rsurf
rs λ

λ
⋅σ=

λ
λ

=λ      (13a) 

is called specular reflectance. Ed(λ) and Ls(λ) can either be imported from file, or one or 
both can be calculated using eq. (23) or (25). If the wavelength-independent model of 
surface reflection is chosen, it is  

.R Lsurf
rs π

σ
=        (13b) 

Toole et al. (2000) showed that Rrs
surf(λ) is nearly spectrally flat for an overcast day, but is 

not flat for clear-sky conditions. Thus, eq. (13a) should be used in general, and eq. (13b) 
only for overcast days. 
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2.5 IRRADIANCE REFLECTANCE  

2.5.1 Deep water  
The ratio of upwelling irradiance to downwelling irradiance in water, R(λ) = Eu(λ) / 

Ed(λ), is called irradiance reflectance (Mobley 1994). It is an AOP and depends not  
only on the properties of the medium, but also on the geometric distribution of the 
incoming light. A suitable parameterization which separates to a large extent the 
parameters of water and the illumination conditions was found by Gordon et al. (1975):  

R(λ) = f · ωb(λ).       (14) 

The function ωb(λ), which is given by eq. (8), depends only on inherent optical  
properties of the water body, absorption and backscattering. The factor f comprises the 
illumination dependencies. It can be treated either as an independent parameter with a 
default value of 0.33 according to Gordon et al. (1975), or the relationship of Albert and 
Mobley (2003) can be used: 

( ) .
'cos

4121.216638.45358.63586.311034.0f
sun

3
b

2
bb ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
θ

+⋅ω⋅+ω⋅−ω⋅+⋅=  (15) 

θ’sun is the sun zenith angle in water. Eq. (15) takes into consideration the fact that f 
depends not only on the geometric structure of the light field, expressed by the  
parameter θ’sun, but also on the absorption and scattering properties of the water, which are 
included in ωb. The weak dependence of f on the wind speed is neglected. Some  
alternate models of f are also included in WASI and can be used if desired, namely those 
of Kirk (1984), Morel and Gentili (1991), and Sathyendranath and Platt (1997). 

Independently from Gordon, Prieur (1976) found the relation R(λ) = f’ · bb(λ) / a(λ).  
It is also included in WASI. However, the Gordon algorithm (14) is favoured and set  
as the default, because it restricts the ωb values to the physically reasonable range  
from 0 to 1, which is not the case for the Prieur equation.  

2.5.2 Shallow water  
For shallow water, the parameterization found by Albert and Mobley (2003) is  

used:  

( ){ }[ ]
( ){ }BuBd

b
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sh

z)(K)(Kexp)(R9755.0

z)(K)(Kexp0546.11)(R)(R

⋅λ+λ−⋅λ⋅+

⋅λ+λ−⋅−⋅λ=λ   (16) 

The first term on the right-hand side is the reflectance of a water layer of thickness zB,  
and the second term is the contribution of the bottom. Bottom reflectance Rb(λ) is 
calculated using eq. (21). The K’s account for attenuation within the water layer and are 
calculated using eqs. (5), (6), and (7). 
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2.6 REMOTE SENSING REFLECTANCE  

2.6.1 Deep water  
The ratio of upwelling radiance to downwelling irradiance, Rrs(λ) = Lu(λ) / Ed(λ),  

is called remote sensing reflectance (Mobley, 1994). It is an AOP and can be 
parameterized the same as R(λ) (Albert and Mobley, 2003):  

Rrs
− (λ) = frs · ωb(λ).     (17) 

Alternately, Rrs
− can be calculated as Rrs

−  (λ) = R(λ) / Q, where R(λ) is either calculated 
using eq. (14) or imported from file, and Q ≡ Eu / Lu is treated as a parameter with a 
default value of 5 sr. A parameterization of the factor frs, which can be applied to both 
deep and shallow waters, was found by Albert and Mobley (2003):  
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Parameters of frs are ωb of eq. (8), the sun zenith angle in water, θ’sun, and the viewing 
angle in water, θ’v. Alternately, frs can be calculated as frs = f / Q. 

2.6.2 Shallow water  
For shallow water, the following parameterization is chosen (Albert and Mobley, 

2003):  
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The first term on the right-hand side is the reflectance of a water layer of thickness zB,  
the second term the contribution of the bottom. Bottom reflectance Rb

rs(λ) is calculated 
using eq. (22). Kd, kuW and kuB account for attenuation within the water layer and are 
calculated using eqs. (5), (9), and (10), respectively.  

2.6.3 Above the surface  
Above the surface, the user can select one of the following parameterizations:  
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The three equations are formally identical. A derivation is given in Mobley (1994). The 
first term on the right-hand side of each equation describes reflection in the water, the 
second at the surface. Frequently, the first term alone is called remote sensing  
reflectance (e.g. Mobley 1994). In WASI, the reflection at the surface is also included in 
the Rrs definition. It is calculated using eq. (13a) or (13b) and can easily be excluded by 
setting the reflection factor σL equal to zero. 

Rrs
− (λ) is calculated using eq. (17) or (19), R(λ) using eq. (14) or (16). The factors  

σ, σL
−, and σ−  are the reflection factors for Ed, Lu

−, and Eu
−, respectively. σ depends on the 

radiance distribution and on surface waves. Typical values are 0.02 to 0.03 for clear  
sky conditions and solar zenith angles below 45°, and 0.05 to 0.07 for overcast skies  
(Jerlov 1976; Preisendorfer and Mobley 1985, 1986). The default value is σ = 0.03.    
σL

− can either be calculated as a function of θv using eq. (12), or a constant value can be 
inserted.  σ − is in the range of 0.50 to 0.57 with a value of 0.54 considered typical  
(Jerome et al. 1990; Mobley 1999). The defaults of the other constants are set to Q = 5 sr  
and nW = 1.33.  

Selection of the equation to use depends on the application: 

• Eq. (20a) links remote sensing reflectance in water to that in air. Since the same 
spectrum type is used above and below the water surface, it is the most 
convenient parameterization. This equation is used by default. 

• Eq. (20b) is useful when Rrs(λ) is linked to R(λ), for example if in situ 
measurements of R(λ) were performed as “ground truth” for a remote sensing 
instrument. 

• Eq. (20c) avoids the use of the factor Q, which is difficult to assess. The  
equation is useful, for example, for optical closure experiments which  
investigate the consistency of measurements above and below the water surface 
by measuring simultaneously the spectra Rrs(λ), R(λ), and Rrs

− (λ). 

2.7 BOTTOM REFLECTANCE 

The irradiance reflectance of a surface is called albedo. When N different surfaces of 
albedo an(λ) are viewed simultaneously, the measured albedo is the following sum: 

∑
−

=

λ⋅=λ
1N

0n
nn

b ,)(af)(R       (21) 

where fn is the areal fraction of surface number n within the sensor’s field of view; it is  
Σ fn = 1. This equation is implemented in WASI for N = 6 bottom types. Three of the 
spectra an(λ) provided with WASI represent bare bottom, the other green makrophytes:  
0 = a constant reflectance of 10 %, 1 = sand, 2 = silt, 3 = Chara aspera, 4 = Potamogeton 
perfoliatus, 5 = Potamogeton pectinatus. All spectra were measured by  
Pinnel (2005). The sand spectrum is from a coastal shallow area in South Australia 
(Bolivar), the other spectra were measured at German lakes (Lake Constance and 
Starnberger See).  

When the upwelling radiation is measured by a radiance sensor, the corresponding 
remote sensing reflectance can be expressed as follows: 
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where Bn is the proportion of radiation which is reflected towards the sensor. In WASI, the 
Bn’s of all surfaces are assumed to be angle-independent. The default values are set to  
Bn = 1/π = 0.318 sr-1, which represents isotropic reflection (Lambertian surfaces).  

2.8 DOWNWELLING IRRADIANCE  

2.8.1 Above the water surface  
An analytic model of the downwelling irradiance spectrum Ed(λ) using only a few 

parameters, was developed by Gege (1994, 1995). It fits to measured spectra with a high 
degree of accuracy (average rms error of 0.1%). The radiation illuminating the water 
surface is parameterized as the sum of four spectrally different components: (1) the direct 
solar radiation; (2) the blue sky (Rayleigh) scattering; (3) radiation scattered by  
aerosols (Mie scattering); and (4) clouds. Each component is expressed in terms of a 
wavelength-dependent fraction of the extraterrestrial solar irradiance E0(λ): 

Ed(λ) = [ α · tA(λ) + β · (λ/λR)-4.09 + γ · (λ/λM)v + δ · tC(λ) ] · E0(λ).  (23) 

The four functions ti(λ) = {tA(λ), (λ/λR)-4.09, (λ/λM)v, tC(λ)} are transmission spectra  
which spectrally characterize the four light sources. Their weights α, β, γ, and δ, may 
change from one measurement to the next, but the ti(λ) functions are assumed to be 
constant over time. 

In order to make the weights α, β, γ, and δ relative intensities of the four light  
sources, each is normalized as ∫ ti(λ) E0(λ) dλ = ∫ E0(λ) dλ where the default integration 
interval is 400 to 800 nm. The functions (λ/λR)-4.09 and (λ/λM)v and are calculated during 
run-time. Normalization yields their scaling factors: λR = 533 nm, and λM is typically 
between 563 nm (v = –1) and 583 nm (v = 1). The exponent v parameterizes the 
wavelength dependency of aerosol scattering. The remaining functions tA(λ) and tC(λ)  
are read from file. After import they are normalized. The two provided with WASI  
were determined from measurements at Lake Constance. 

2.8.2 Below the water surface  
The downwelling irradiance in water, Ed

−, is related to the downwelling irradiance in 
air, Ed, through Ed

−(λ) = (1–σ) · Ed(λ) + σ− · Eu
−(λ). σ is the reflection factor for 

downwelling irradiance in air, σ− for upwelling irradiance in water, and Eu
− is the 

upwelling irradiance in water. Using the irradiance reflectance R = Eu
− / Ed

− yields the 
following expression:  

.)(E
)(R1

1)(E dd λ⋅
λ⋅σ−

σ−
=λ −

−      (24) 

This equation is used in WASI for calculating Ed
−(λ). R(λ) is calculated using eq. (14). 

Ed(λ) can either be calculated according to eq. (23) or a measured spectrum can be taken. 
Default values of the reflection factors are σ = 0.03 and σ− = 0.54.  
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2.9 SKY RADIANCE  

The parameterization used for Ed(λ) is also implemented for Ls(λ): 

Ls(λ) = [ α* · tA(λ) + β* · (λ/λR)-4.09 + γ* · (λ/λM)v + δ* · tC(λ) ] · E0(λ).  (25) 

The functions E0(λ), tA(λ), (λ/λR)-4.09, (λ/λM)v, and tC(λ) are those used with eq. (23). 
Parameters of Ls(λ) are the weights α*, β*, γ*, and δ*, which represent the relative 
intensities of the four above-mentioned light sources for a radiance sensor, and the 
exponent v. 

This model of Ls(λ) is included for modeling specular reflection at the water  
surface. Its usefulness has been demonstrated (Gege, 1998b). Capillary waves at the  
water surface, and moreover gravity waves, increase the sky area that is reflected into the 
sensor, and change the angle of reflection. Consequently, measurements of Ls(λ) are 
frequently not reliable. For these cases, and if no Ls(λ) measurement is available, eq. (25) 
can be applied. If the user selects the wavelength-independent model of surface 
reflections, Ls(λ) = Ed(λ)/π is utilized.  

2.10 UPWELLING RADIANCE  

The upwelling radiance is that part of the downwelling irradiance which is  
reflected back from the water into a down-looking radiance sensor. Calculation is based on 
a model of Rrs and a model or a measurement of Ed. 

In water, eq. (24) is used for calculating Ed
−(λ), and eq. (17) or (19) for Rrs

−(λ). The 
upwelling radiance is then calculated as follows:  

.       (26) )(E)(R)(L drsu λ⋅λ=λ −−−

In air, the upwelling radiance after crossing the water-air boundary is related to Lu
− as 

follows:  

.)(L)(L
n

1)(L ru2
W

L
u λ+λ⋅

σ−
=λ −

−
     (27) 

The first term on the right-hand side is the radiance upwelling in the water, weakened at 
the interface by Fresnel reflection (factor 1–σL

− ) and refraction (flux dilution by  
widening of the solid angle, factor 1/nw

2). Lu
−(λ) is obtained from eq. (26), Lr(λ) from  

eq. (11). σL
− can either be calculated as a function of θv using eq. (12), or a constant  

value can be used. Default values of the constants are σL
− = 0.02 and nW = 1.33.  

3. Inverse Modeling  

Inverse modeling is the determination of model parameters for a given spectrum.  
The complete list of model parameters for all spectrum types is given in Table 2. These 
can be iterated in the forward mode to generate series of spectra, and their values can be 
determined in the inverse mode. The user defines which parameters are determined  
during inversion and which are kept constant. The former are called fit parameters. The 
actual number of fit parameters depends on the spectrum type, on model options, and on 
the user’s choice of which parameters to fit and which to fix during inversion.  
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Table 2. List of WASI parameters. 

Symbol WASI Units Description 
Ci C[i] µg/l Concentration of phytoplankton class no. i, i = 0..5 
CL C_L mg/l Concentration of large suspended particles 
CS C_S mg/l Concentration of small suspended particles 
X C_X m-1 Concentration of non-chlorophyllous particles 
Y C_Y m-1 Concentration of Gelbstoff 
S S nm-1 Exponent of Gelbstoff absorption 
n n - Exponent of backscattering by small particles 
T T_W °C Water temperature 
f f - Proportionality factor of reflectance ("f-factor") 
Q Q sr Anisotropy factor ("Q-factor") 
θsun sun ° Sun zenith angle 
θv view ° Viewing angle (0 = nadir) 
σL sigma_L - Reflection factor of sky radiance 
zB zB m Bottom depth 
ν nue - Exponent of aerosol scattering 
α alpha - Fraction of irradiance due to direct solar radiation 
β beta - Fraction of irradiance due to molecule scattering 
γ gamma - Fraction of irradiance due to aerosol scattering 
δ delta - Fraction of irradiance due to cloud scattering 
α* alpha_s sr-1 Fraction of radiance due to direct solar radiation 
β* beta_s sr-1 Fraction of radiance due to molecule scattering 
γ* gamma_s sr-1 Fraction of radiance due to aerosol scattering 
δ* delta_s sr-1 Fraction of radiance due to cloud scattering 
fn fA[n] - Areal fraction of bottom surface type no. n, n = 0..5 

3.1 IMPLEMENTED METHOD  

3.1.1 Curve fitting  
The fit parameters are determined iteratively using the method of nonlinear curve 

fitting. In the first iteration, a model spectrum is calculated using initial values for the  
fit parameters. This model spectrum is compared with the measured spectrum by 
calculating the residuum as a measure of correspondence. Then, in the further  
iterations, the values of the fit parameters are altered, resulting in altered model curves  
and altered residuals. The procedure is stopped after the best fit between the calculated  
and measured spectrum is found. The best fit corresponds to the minimum residuum,  
and these values are the estimates of fit parameters.  

3.1.2 Search algorithm  
Since an infinite number of possible parameter combinations exists, an effective 

algorithm of the iteration process is needed to select a new set of parameter values from 
the previous sets. WASI uses the Simplex algorithm (Nelder and Mead, 1965; Caceci and 
Cacheris, 1984). It has two advantages compared to other customary algorithms like 
Newton-Ralphson and Levenberg-Marquardt: it always converges, and computations  
are rapid since no matrix operations are required. 

In the Simplex algorithm, a virtual space of M+l dimensions is constructed, where  
M dimensions represent the M fit parameters, and one dimension the residuum. Each 
model curve corresponds to one point in that space, and the set of all possible model  
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curves (obtained by all combinations of parameter values) forms an M dimensional 
surface. That point on the surface where the residuum is minimal represents the solution of 
the fit problem. The Simplex can be compared to a spider which crawls on the  
surface searching for the minimum. It consists of M+1 legs, where each leg (vertex) 
represents a model curve that has already been calculated. The decision regarding which 
set of parameter values is chosen in the next step (i.e. where the Simplex moves to)  
is made according to a strategy explained using Figure 2. 

 

 

Figure 2. The Simplex and its potential contours in the next step. After Caceci and Cacheris (1984). 
 

The triangle WBO represents the Simplex. W corresponds to the worst residuum, B to 
the best, and O to all others. Four new positions in the next step are considered: (1) 
reflection of W at the line OB so that RBO is the new Simplex; (2) contraction towards 
this line so that CBO is the new Simplex; (3) expansion beyond this line to the point E;  
(4) shrinkage parallel to the line WO so that SBS’ is the new Simplex. Not all of these 
positions are always calculated: they are tested in this order, and the first position is  
taken where the new vertex is better than W. Usually the Simplex is trapped in a minimum 
after less than 20 · M2 iterations (Caceci and Cacheris, 1984). However, if the  
surface contains local minima, the Simplex may be captured in one of these. In such  
cases it is important to start the search at a point not too far away from the global  
minimum.  

3.1.3 Modes of operation  
Three modes of operation are implemented in WASI:  

• Single spectrum mode. Fitting is performed for a single spectrum. After 
inversion, an overlay of the spectrum and fitted curve is automatically shown on 
screen and the resulting fit values, number of iterations, and residuum are 
displayed. This mode allows the user to inspect the fit results of individual 
measurements. This mode is useful for optimizing the choice of initial values and 
the fit strategy before starting a batch job.  

• Batch mode. A series of spectra from file is fitted. After each inversion, an 
overlay of the imported spectrum and fitted curve is automatically shown on 
screen. This mode is useful for processing large data sets.  
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• Reconstruction mode. Combines forward and inverse modes. Inversion is 
performed for a series of forward calculated spectra which are not necessarily 
read from file. The model parameters can be chosen differently for forward  
and inverse calculations. This mode is useful for performing sensitivity  
studies.  

3.2 INVERSION PROBLEMS  

3.2.1 Ambiguity  
When different sets of model parameters yield similar spectra, the inversion  

problem is ambiguous. In such a case, no algorithm can reliably find the correct values of 
the fit parameters. The problem is model specific and increases drastically with the 
number of fit parameters.  

An example is given in Figure 3. Three absorption spectra aWC(λ) were calculated 
using eq. (1) by summing the absorptions of phytoplankton chlorophyll (concentration C0) 
and Gelbstoff (concentration Y, spectral slope S). The concentrations C1, …, C5 and X 
were set to zero. The curves are almost identical from 400 to 600 nm, but have very 
different parameter values: the parameter set (C0, Y, S) is (2, 0.2, 0.014) for curve A,  
(1, 0.232, 0.0124) for curve B, and (4, 0.132, 0.020) for curve C. Thus, although 
phytoplankton concentration differs by a factor of 4, the three curves can hardly be 
distinguished between 400 to 600 nm. It is consequently not possible to determine all three  
parameters C0, Y, S from measurements in this spectral range, since any inversion  
method compensates for error with one parameter by using erroneous values for the two 
other parameters. There are two solutions to this type of problem: 1) at least one of the 
parameters must be known and kept constant during inversion, 2) the spectral range  
must be extended to wavelengths above 600 nm. 

400 500 600 700 800
Wavelength (nm)

0

0.1

0.2

0.3

0.4

Ab
so

rp
tio

n 
(m

.1
)

AA
BB
CC

 

Figure 3. Illustration of the ambiguity problem. Although phytoplankton concentration C0  
differs by a factor of 4, the three spectra are very similar from 400 to 600 nm. The changes  
caused by C0 are compensated by changes of the Gelbstoff parameters Y and S.  
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3.2.2 Failure to converge  
An inversion algorithm doesn’t always find a minimum. Several conditions can  

cause such a failure to converge:  

• Initial increments are too small. If the initial steps of the search algorithm are  
too small, the differences in the residuals are too small to indicate an 
improvement for a particular parameter combination compared to others. 
Depending on the criterion for termination, this may cause premature  
conclusion, or travelling in the wrong direction in the multidimensional 
parameter space.  

• Acceptable errors are too large. If the criterion for terminating inversion is 
chosen as too weak, the inversion algorithm may stop too early, before the 
minimum is found.  

• Unsuited initial values. If the initial values of the fit parameters are too  
different from the correct values, the search for the minimum may start in a 
wrong direction. The greater the number of fit parameters, the more difficult it is 
to find the correct region in the multidimensional parameter space.  

 
3.3 PROBLEM SOLUTIONS OF WASI  

3.3.1 Use of pre-knowledge  
In WASI, one can make use of expected parameter values. Typical values of all 

parameters and constants are stored in the file WASI.INI, which is read during start up of 
the program. The user can change them all. The parameters which are fitted during 
inversion can be initialised either with these expected values, or with estimates  
calculated by using analytic approximations (see 3.3.3). When a series of spectra is 
analyzed, the parameter values may be similar. Thus, the fit results of one measurement 
can be taken as start values for the next.  

The parameter range can also be modified The range of possible values is known in 
general for each parameter, and within WASI a lower and an upper value is  
attributed to each fit parameter. The defaults of these border values are read during 
program start from the WASI.INI file, and the user can change them. They are used 
whenever the search algorithm attempts to assign an out-of-range value to a parameter.  

When a well-known correlation exists between model parameters, it may be useful to 
restrict a parameter search to values which depend on the actual values of one  
or more other parameters. No general scheme of this method (regularization) is 
implemented in WASI. However, some correlations between parameters can be  
utilized. For example, suspended matter can be correlated to phytoplankton chlorophyll by 
setting CL = C0 (see 2.2.1); the reflection factor for sky radiance can be related to the 
viewing angle using the Fresnel equation (12); and the areal fraction fn of one bottom  
type can be related to the fractions of the other types using Σ fn = 1 (see 2.7).  

3.3.2 Adjust calculation of the residuum  
The residuum, ∆, is the measure of the difference between a measured spectrum  

and its fitted curve. The inversion procedure’s task is to find its minimum. The  
residuum can be envisaged as a surface in the M+l dimensional space formed by the M  
fit parameters and by ∆. The shape of that surface depends on which construction law is 
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used. Thus, the search for the minimum can be optimized by adjusting the construction 
law to the inversion problem.  

Algorithms. The user has the choice between 6 algorithms to calculate ∆:  
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The residuum is a weighted sum over N spectral channels. The subscript i indicates the 
channel number, mi denotes the measured value, fi the fit value, and gi the weight. Eq. 
(28a) in combination with gi = 1 is the classical least-squares fit. During inversion the fi 
values are changed, but not the mi and gi values.  

The impact of residuum algorithm selection on the shape of the surface in the 
parameter space is illustrated in the example of Figure 4. Two contour plots of the 
residuum are shown for an inversion of absorption spectra, which were calculated using 
eq. (1) by summing the absorptions of phytoplankton and Gelbstoff. In this example the 
concentrations C1, …, C5 and X were set to zero. Phytoplankton chlorophyll  
concentration C0 was set to 2 µg/l during forward and inverse calculation. The  
Gelbstoff parameters were set to S = 0.014 nm–1 and Y = 0.3 m–1 during forward 
calculation and then were iterated from 0.01 nm–1 ≤ S ≤ 0.02 nm–1 and 0 ≤ Y ≤ 0.6 m–1 
during inversion. No fit was performed during inversion; only the residuum was  
calculated for each parameter combination with equal weights gi = 1.  

The major difference between the two plots of Fig. 4 is the orientation of the valley 
which forms the minimum: the valley is almost parallel to the S axis for the classical  
least-squares fit (eq. 28a), i.e. the inversion cannot determine S reliably. When the 
logarithms of the mi and fi are taken (eq. 28d), the valley is oriented diagonally in the  
S-Y-plane, and thus fitting of both S and Y is feasible. For the concentrations chosen, eq. 
(28d) is more appropriate because the absorption spectrum is dominated by the 
exponential function of Gelbstoff.  
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Figure 4. Contour plots of the residuum at inversion of absorption spectra. Both plots correspond to a  
least-squares fit. Left: Linear weighting of absorption values (eq. 28a). Right: Logarithmic weighting of 
absorption values (eq. 28d). 

Spectral range and data interval. The user can select the channels i which will be taken 
for residuum calculation by specifying the upper and lower boundaries and channel 
interval. Modern instruments frequently provide hundreds of spectral channels. It is 
usually not necessary to use each channel for inversion. Reducing the number of  
channels reduces calculation time.  

Spectral weighting. The channels are weighted individually such that their weights gi  
are read from file. The default file is EINS.PRN, which sets all gi to unity. The  
selection of different gi’s allows the user to exclude certain spectral regions or to weight 
the information spectrally. This feature is useful if the measurement or the model is not 
reliable in certain spectral intervals. For example, since the models do not include 
chlorophyll fluorescence at 685 nm, it may be useful to exclude channels around 685 nm 
or give them low weights.  

3.3.3 Automatic determination of initial values  

Making a good guess for the fit parameters’ initial values is the best way to reduce  
all types of inversion problems. Thus, for operational data analysis it is desirable to  
have an automatic algorithm which estimates initial values for the most relevant 
parameters with acceptable errors. Such automatic methods are implemented for R and  
Rrs spectra. The case for R in deep water is described below, while those for R and Rrs  
in shallow waters are explained in Albert (2004) and Albert and Gege (2005).  

Example: R in deep water. Irradiance reflectance R(λ) is one the most frequently  
measured spectrum types in optically deep waters. The most common parameters 
determined from these measurements are the concentrations of phytoplankton (C0), 
Gelbstoff (Y) and large suspended particles (CL). Gege (2002b) investigated the  
sensitivity of these fit parameters to errors. The study demonstrated a very small 
sensitivity for CL, some sensitivity for Y, but very high sensitivity for C0. Considering 
error propagation, the study suggested a two-steps procedure for initial values 
determination. The procedure has been further optimised, resulting in the four-step 
procedure summarized in Table 3 and presented below.  
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Table 3. Four-step procedure for initial values determination of irradiance reflectance spectra in  
deep water.  

Step Determine Algorithm Description 

1 CL, CS analytical Estimate CL and CS from an analytic equation at a 
wavelength in the near infrared. 

2 Y, C0 analytical 
Estimate Y and C0 from analytic equations at two 
wavelengths; for CL and CS the values from step 1 are 
taken. 

3 CL, CS, Y fit 
Determine initial values of CL, Cs and Y by fit. C0 is kept 
constant at the value from step 2; CL, CS and Y are 
initialized using the values from steps 1 and 2. 

4 C0, Y, S fit 
Determine initial values of C0, Y and S by fit. CL is kept 
constant at the value from step 3, Y is initialized using the 
value from step 3, S is initialized by the user-setting. 

 

Step 1. Suspended matter backscattering, B0 = bb – bb,W, can be calculated analytically 
from R at any wavelength λIR for which absorption a(λIR) is known. For λIR a  
wavelength in the near infrared is chosen since absorption of water constituents is 
generally very low compared to absorption of pure water at λ > 700 nm (Babin and 
Stramski, 2002). Ideally, λIR > 750 nm should be used, since phytoplankton absorption 
a0*(λ) is zero above 750 nm. The equation of determination is obtained from eqs. (8)  
and (14): 
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f is calculated using the selected f model, e.g. eq. (15), with the user-defined initial  
values as parameter values. If a B0-dependent f model is selected, B0 is calculated in  
two iterations, i.e. the B0 value from the first iteration is taken to calculate f again, and 
using this f B0 is calculated a final time.  

Conversion from optical units B0 to gravimetric concentrations CL, CS is based on  
eq. (4) assuming bL(λ) = 1. Accordingly it is B0 = CL · bb,L* + CS · bb,S* · (λ/λS)n.  
If CS = 0, it is CL = B0 / bb,L*, otherwise the user-defined ratio rSL = CS/CL is retained, 
 and CL and CS are calculated as follows:  
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If λIR > 750 nm, the accuracy of the analytically estimated parameters CL and CS 
depends only on λIR, Gelbstoff absorption at λIR, and on CL and CS themselves. The 
dependence of the relative CL error on Y and CL is shown in Fig. 5 for two values of  
λIR, 750 and 870 nm. It was calculated as 100 · (CL/CL

fwd – 1), where CL
fwd is the value  

of forward calculation and CL the value obtained from eq. (30). Values of S = 0.014 nm–1 
and CS = 0 were used. As Figure 5 shows, CL can be determined using eqs. (29) and (30) 
with an accuracy of about 1%.  
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Figure 5. Relative errors in percent for analytic determination of CL. Left: λIR = 750 nm, Right:  
λIR = 870 nm.  

 
Step 2. If bb(λ) is known with little error, e.g. from step 1, C0 and Y can be estimated 
analytically from two wavelengths λ1, λ2. The equations of determination are obtained  
by using the R(λ) equation (14) and setting C1…C5 = 0, T = T0, X = 0. This eq. (14') is 
solved for the sum Y · aY*(λ) + C0 · a0*(λ), and the ratio RA is taken for two  
wavelengths: 
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Since all functions on the right-hand side are known, RA can be calculated. Division of the 
nominator and denominator of the center expression by C0 leads to an equation which has 
a single unknown parameter, the ratio Y/C0. Rewriting this equation yields the following 
expression:  
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The ratio Y/C0 is calculated using this equation. By inserting Y = (Y/C0) · C0 into  
eq. (14') and solving it for C0 at a wavelength λ3, the following expression is obtained:  
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This equation is used to calculate C0. Y is then calculated as Y = (Y/C0) · C0.  
The accuracy of the analytically estimated parameters C0 and Y depends on λ1, λ2,  

λ3, C0, Y, CL, CS, and on the errors of CL and CS, as determined from step 1.  
Simulations were performed to optimize the choice of the wavelengths λ1, λ2, λ3. These 
suggest: λ1 < 470 nm, λ2 < 500 nm, λ3 < 550 nm. In each case, preference should be  
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given to shorter wavelengths. A good choice is λ2 = λ0 since S errors don’t affect  
Gelbstoff absorption at λ0. For λ3 no separate wavelength must be chosen, and it can be  
set as λ3 = λ2. Consequently, selection of only two wavelengths is implemented in  
WASI. Their default values are: λ1 = 413 nm, λ2 = 440 nm.  

In order to illustrate the parameter dependencies and magnitudes of the C0 and Y 
errors, Figure 6 presents two examples of these errors. R(λ) spectra were calculated  
using eq. (14) with ωb(λ) from eq. (8) and f from eq. (15). All non-iterated parameters 
were set equal during forward and inverse calculation: C0 = 2 µg/l, C1…C5 = 0, X = 0,  
Y = 0.2 m–1, CS = 0, S = 0.014 nm–1, θsun = 30°, T = 18°C. CL was iterated from 0.1 to  
100 mg/l, and for Figure 6A Y was iterated from 0.01 to 10 m–1, for Figure 6B C0 was 
iterated from 0.1 to 100 µg/l. All iterations were done in 51 steps such that the  
logarithmic values were equidistant. Thus, both plots in Figure 6 consist of 51 · 51 = 2601 
data points, where each point represents the absolute error 100 · |c/cfw– 1| of the 
concentration c, Y for Figure 6A and C0 for Figure 6B. cfw is the concentration at  
forward calculation, and c is the retrieved value. Figure 6 indicates that Y can be 
determined analytically with a typical accuracy of < 30 %, and C0 of about 30–100 %. 
This is sufficient for initial values.  

 

Figure 6. Relative errors of analytic determination of (A) Y error and (B) C0 error. 

Steps 3 and 4. These steps were suggested in the study mentioned above (Gege,  
2002b). Newly developed Steps 1 and 2 make them unnecessary in most cases.  
However, they may be useful under certain conditions: if no suitable infrared channel is 
available for accurate determination of CL or CS, or if S is a fit parameter. Steps 3 and 4 
improve the estimates for C0, CL, CS and Y by including additional spectral  
information, and a start value of S can be determined.  

3.3.4 Initialize Simplex  
The search algorithm’s dynamic memory, the Simplex, is a set of M+l vectors.  

Each vector (or vertex) contains the actual values of the M fit parameters and the 
corresponding residuum. When the fit routine is started, the M+l vertices are  
initialized. The fit parameters’ initial values and the corresponding residuum form one 
vertex and the other M vertices are calculated using incremental changes of the initial 
values. These increments are set to 0.1 x the initial values. They cannot be changed by  
the user.  
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3.3.5 Terminate search  
The fit is stopped when either the termination criterion is fulfilled or the maximum 

number of iterations is reached. The termination criterion is such that the differences 
between the actual parameter values must be less than a threshold for each parameter. 
Each parameter has its specific threshold, which is set to 10–5 times the initial value. It 
cannot be changed by the user. The user defines the maximum number of iterations,  
which should be set high enough that a forced stop is exceptional.  

 
4. Applications  

4.1 DATA ANALYSIS  

Automatic data analysis of a series of spectra is performed in the batch mode  
within WASI. The spectra must be in ASCII format. The following user actions are 
required:  

1. Copy all spectra into the same directory  
2. Specify the directories of input and output data  
3. Specify file names and file format of the input data  
4. Set the batch mode  
5. Specify the spectrum type  
6. Tune the fit procedure  
7. Set the model parameters  
8. Select the fit parameters  
9. Start calculation  

The results are stored in ASCII format in the specified output directory. A single table, 
FITPARS.TXT, summarizes the fit parameters of all spectra. All calculation settings are 
documented in an actual copy of the file WASI.INI. The fit curves of all spectra can be 
saved as single files.  

4.2 ERROR ANALYSIS  

No measurement is perfect, no model is exact, and no input data set is complete.  
Thus, the results of data analysis are unavoidably affected by errors. Sensitivity studies are 
designed to estimate the errors for a determined parameter caused by the different  
error sources. The best way to perform a sensitivity study is to simulate a large number of 
measurements using a reliable model, and to then analyze these subsequently as if  
they were real measurements. Well-defined discrepancies between the forward and  
inverse models can be introduced which cause errors in the retrieved parameters. In this 
way, parameter errors can be attributed quantitatively to different error sources. The 
advantages of using simulated spectra rather than measured spectra are that all studied 
effects are under control, and that the entire expected parameter interval can be covered 
without a gap.  

4.2.1 Errors from the sensor  
The number of parameters that can be derived from a measurement and the accuracy 

of the estimates depends very much on the sensor and on data quality. The  
following instrument characteristics are relevant: number, center wavelengths and  
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spectral resolutions of spectral channels; radiometric resolution; accuracy of radio-metric 
and spectral calibration; noise; and drift.  

For estimating the limits of accuracy caused by the sensor, spectra of the given  
sensor are simulated for different combinations of model parameters, and spectra of a 
“perfect” sensor are calculated for the same combinations. Both sets of spectra are 
inverted, and the accuracies of the fit parameters are compared.  

Sensor characteristics which are readily defined and changed easily using WASI are 
number and center wavelengths of the channels, radiometric resolution, and  
statistical noise. For studying the influence of spectral resolution and calibration  
accuracy, WASI can be used to calculate spectra which are sensor-adjusted with respect  
to the number and center wavelengths of the channels, radiometric resolution, and 
statistical noise. These spectra are then modified according to the instrument 
characteristics: the spectra are smoothed if the instrument has a lower spectral  
resolution than the input data, error spectra are added and/or multiplied to the spectra if 
radiometric calibration errors are investigated, and the wavelength values are changed if 
spectral calibration errors are analyzed. This is done using separate software, such as a 
spread sheet program. Finally, the sensor-adjusted spectra are inverted using WASI.  

An example is given in Figure 7. Absorption spectra of water constituents were 
simulated for 4 sensors which differ in the number of spectral channels and in the noise 
level: spectra aWC(λ) were calculated using eq. (1) from 400 to 800 nm for wavelength 
intervals of 2 and 20 nm and statistical noise of 0.002 and 0.02 m–1 standard deviation. 
The Gelbstoff parameters chosen were Y = 0.2 m–1 and S = 0.014 nm–1. Concentrations  
C1, …, C5 and X were set to zero. Phytoplankton chlorophyll concentration C0 was 
changed from 0.1 to 100 µg/l in 51 steps. 20 spectra aWC(λ) were calculated for each C0 
value by applying a simple trick: a parameter not used in the actual model was iterated 
during forward calculation. Each of the 51 · 20 = 1020 spectra for each sensor was 
inverted with C0 and Y as fit parameters. Figure 7 compares the C0-dependency of the 
relative C0 errors for the 4 sensor specifications. C0 errors are more sensitive to noise  
than to the number of channels in this example.  

 
4.2.2 Errors from the model 

The radiative transfer equation for an absorbing and scattering medium like water 
cannot be solved analytically, hence observations which depend on the radiation field 
(AOPs) can only be approximated. WASI uses analytic approximations based on 
parameters which can be measured with relative ease. Advantages are that inversion is 
relatively simple, altered input data sets are included quickly, and computing is fast.  

From a numerical point of view, any desired accuracy can be achieved by using 
converging methods such as Monte Carlo, invariant imbedding, matrix operator, 
successive order of scattering, finite elements, etc. However, high accuracy is at the 
expense of computing time, which, for these methods, is by far too long for inverting a  
set of spectra. In order to estimate errors introduced by the approximations of WASI, a set 
of spectra must be calculated using a numerically exact program, and for the same 
conditions a second set of spectra is calculated using WASI. Both sets of spectra are 
inverted, and the differences of the fit parameters reflect the errors introduced by the 
simplified model.  

An example is given in Figure 8. Remote sensing reflectance spectra of shallow  
water were calculated using both HYDROLIGHT (Mobley et al., 1993, Mobley, 1994) 
and WASI (eq. 19). All input data and parameters for the two models were identical.  
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Figure 7. Illustration of errors from a sensor for an example of absorption measurements. The  
plots show errors for inverse modelling of phytoplankton concentration resulting from adjusting  
spectral width of channels and sensor noise.  

Water constituent values were: C0 = 2 µg/l; Y = 0.3 m–1; S = 0.014 nm–1. CL was  
iterated from 1 to 5 mg/l. The lake sediment spectrum provided with WASI was used for 
the bottom albedo. Computing times of HYDROLIGHT, which utilizes the  
invariant imbedding method, were typically 106 times longer than those for WASI.  

 

 

Figure 8. Illustration of errors from the model using an example of remote sensing reflectance  
spectra. A: Comparison of spectra from the numerically extensive program HYDROLIGHT  
with WASI. B: Errors of bottom depth when WASI is used for inverting HYDROLIGHT spectra.  
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Figure 8A compares the HYDROLIGHT and WASI spectra at 2 m and 10 m bottom  
depth for CL = 2 mg/l. The differences can be attributed to Gelbstoff absorption and 
chlorophyll a fluorescence, which is accounted for in HYDROLIGHT but not in WASI. 
Both sets of spectra were inverted using WASI (eq. 19). During inversion only the  
bottom depth zB was a fitted parameter; and all other parameters were fixed at their  
correct values. Figure 8B shows the relative errors 100 · (zB

fit / zB –1) as a function of zB 
for CL = 1, 2, 3, 4, 5 mg/l, where zB

fit are the results from inverting the HYDROLIGHT 
spectra. The influence of the bottom albedo on remote sensing reflectance decreases  
with increasing depth and increasing concentration of suspended matter. Thus, the 
accuracy of zB determination decreases accordingly. The corresponding errors from 
inverting the WASI spectra were close to zero and are not shown. Since only zB was 
unknown, the errors in Figure 8B demonstrate the lower limit for model errors. More 
realistic error estimates are obtained by fitting additional variables such as C0, Y and CL 
along with zB. However, the errors obtained are a mixture of errors from the model and 
error propagation (see 4.2.4). These two effects can be separated only by performing more 
detailed studies.  

4.2.3 Errors from input data  
Each spectrum type has a specific set of input data. Since all input data have 

uncertainties, it is useful to study the influence of their anticipated errors on the  
retrieved parameters. Three types of input data can be distinguished: (1) input spectra  
from a data base, (2) input spectra from actual field measurements, and (3) input 
parameters. Examples of input data with potentially significant errors are: ai*(λ), aW(λ), 
bL(λ), an(λ), tA(λ), and tC(λ) for type (1); Ls(λ), Ed(λ), and R(λ) for type (2); and S, bb,L*, 
bb,S*, σ, σL, f, Q, Bn, and v for type (3).  

The implications of input data errors on the accuracy of data analysis are studied by 
simulating measurements using a certain set of input data, and then inverting these 
simulations with altered input data. The method of altering input data depends on its  
type: for type (1) other files must be used, for type (2) the input measurements can be 
simulated, and for type (3) individual parameters have to be changed.  

An example is given in Figure 9. Irradiance reflectance was calculated for shallow 
water using eq. (16). The following water constituent values were used: C0 = 2 µg/l,  
CL = 2 mg/l, Y = 0.3 m–1, and S = 0.014 nm–1. For Figure 9A the wavelength-independent 
spectrum of bottom albedo, a0(λ) = 0.1, was chosen. Its absolute value was changed  
from 0.1 to 0.3 during forward calculation by iterating the parameter f0 of eq. (22) from  
1 to 3, but kept constant at 0.2 during inversion. In this way relative errors of the  
bottom albedo from -50 % to 100 % were simulated. During inversion only the bottom 
depth zB was a fit parameter. Its relative error is shown in Figure 9A as a function of zB 
and of the relative albedo error. For Figure 9B, the silt spectrum provided with WASI  
was used as bottom albedo for forward calculation, and the five other bottom types were 
used during inversion. No fit of the incorrect parameters (areal fractions of the  
bottom types) was allowed. As expected, the errors depend on the bottom type and 
decrease with zB.  
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Figure 9. Illustration of errors from input data at the example of irradiance reflectance spectra.  
A: Errors caused by wrong scaling factor of the bottom albedo. B: Errors caused by wrong  
bottom type.  

 
4.2.4 Error propagation  

The influence of an incorrect model parameter value on the accuracy of the fit 
parameters can be analyzed effectively using the reconstruction mode of WASI, which 
combines forward and inverse modeling. The parameter of interest is iterated from a  
low to a high value during forward calculation and kept constant during fitting. With  
the exception of this parameter, the decision for which parameters to fit and which to  
fix is made in the same manner as during data analysis. All fixed parameters are kept  
equal in the forward and inverse mode. When the calculation is started, a series of  
spectra is calculated and subsequently inverted with well-defined errors for one  
parameter. A table is generated which lists the values of the iterated parameter, the 
residuum, the results of all fit parameters, and the relative errors of user-specified 
parameters.  

An example is given in Figure 10. Absorption of water constituents was calculated 
using eq. (1). During forward calculation, phytoplankton concentration C0 was changed 
from 0.5 to 8 µg/l. During inversion C0 was fixed at 2, 1, and 4 µg/l for curves A, B,  
and C, respectively. Gelbstoff concentration, Y, and spectral slope S were estimated  
using inversion. Their relative errors are shown as a function of the relative C0 error.  
The plots illustrate how C0 errors induce Y (Figure 10A) and S (Figure 10B) errors.  

 

 

Figure 10. Illustration of error propagation at the example of absorption spectra. A: Errors of  
Gelbstoff concentration Y caused by C0 errors. B: Errors of exponent S of Gelbstoff absorption  
caused by C0 errors.  
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5. Conclusions  

The Water Colour Simulator WASI is a user-friendly program for forward and 
inverse modeling of optical in situ measurements in aquatic environments. It supports  
all common types of spectral data obtained from shipborne instruments deployed above 
and below the water surface. Computationally, the program uses analytic models which 
are suited for all water types: deep and shallow, inland, coastal, and oceanic. Region-
specific optical properties can be accounted for by exchanging the relevant input data.  

The main application for WASI is data analysis. WASI is designed to automatically 
invert large series of spectra in a reasonable time, i.e. on the order of seconds  
per spectrum. In addition, it is well-suited to analyze errors from different sources by 
means of simulations. Since a consistent set of models is implemented and the same input 
data are used for the different spectrum types, data from different instruments can be 
compared easily (optical closure studies). Vice versa, optical properties of water 
constituents can be derived indirectly from non-specialized instruments, such as 
absorption of water constituents from reflectance measurements. Further applications of 
WASI are visualization of spectral changes upon parameter variation, data simulation,  
and student training.  

WASI does have some restrictions. The implemented models are analytic 
approximations and do not account for all physical effects, such as fluorescence and 
Raman scattering or for certain water constituents such as detritus and bubbles. Vertical 
profiles cannot be calculated, nor can images be processed. Data from instruments on 
satellite and aircraft cannot be analyzed directly, since no atmospheric model is  
included. However, the latter can be done indirectly by coupling WASI with such a 
program.  
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